skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kharzeev, Dmitri E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. A<sc>bstract</sc> In this study, we explore the real-time dynamics of the chiral magnetic effect (CME) at a finite temperature in the (1+1)-dimensional QED, the massive Schwinger model. By introducing a chiral chemical potentialμ5through a quench process, we drive the system out of equilibrium and analyze the induced vector currents and their evolution over time. The Hamiltonian is modified to include the time-dependent chiral chemical potential, thus allowing the investigation of the CME within a quantum computing framework. We employ the quantum imaginary time evolution (QITE) algorithm to study the thermal states, and utilize the Suzuki-Trotter decomposition for the real-time evolution. This study provides insights into the quantum simulation capabilities for modeling the CME and offers a pathway for studying chiral dynamics in low-dimensional quantum field theories. 
    more » « less